Driven Torsional Oscillator

Physics 401, Spring 2016
Eugene V. Colla

Agenda

1.Driven torsional oscillator. Equations

2.Setup. Kinematics
3.Resonance
4.Beats
5.Nonlinear effects
6.Comments

Before starting the torsional

oscillator discussion let we take a look
on some historical examples showing
how dangerous the resonance in mechanical systems can be

Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge Disaster

Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940

Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940

Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

Torsional oscillations. Resonance.

"Dancing Bridge" in Volgograd (Russia) (record from 2 ${ }^{\text {st }}$ May 2010. 4.4 miles long).

Torsional oscillations. Resonance.

In autumn 2011, 12 semi-active tuned mass dampers were installed in the bridge. Each one consists of a mass $5,200 \mathrm{~kg}(11,500 \mathrm{lb})$, a set of compression springs and a magnethoreological damper.

Torsional oscillations. Flutter. Aviation.

Milestones in Flight History Dryden Flight Research Center

PA-30 Twin Commanche

 Tail Flutter Test
Driven torsional oscillator

The goals: (i) analyze the response of the damped driven harmonic oscillator to a sinusoidal drive. (ii) transient response and (iii) steady-state solution.

$$
I \ddot{\theta}+K \boldsymbol{\theta}+\boldsymbol{R} \dot{\theta}=\tau_{m}=K \lambda \theta_{0} \cos (\omega t)
$$

I is momentum of inertia, [kg.m²] R is a damping constant [$\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}$]. K is the total spring constant [$\mathrm{N} \cdot \mathrm{m}$]

Viscous damping
Torque by motor

Driven torsional oscillator

Motor
Pendulum

Transient solution

$$
\boldsymbol{I} \ddot{\theta}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\boldsymbol{\theta}}=\tau_{m}=\boldsymbol{K} \lambda \boldsymbol{\theta}_{0} \cos (\omega t)
$$

Solutions: sum of (1) Transient solution + (2) steady solution due to torque τ_{m}
(1) Transient solution (1st week experiment)

$$
\begin{aligned}
& I \ddot{\theta}+R \dot{\theta}+K \theta=0 \\
& \theta(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right) \\
& a=R / 2 I \\
& \omega_{o}=\sqrt{K / I} \\
& \omega_{1}=\sqrt{\omega_{o}^{2}-a^{2}}
\end{aligned}
$$

The homogeneous equation of motion

Transient solution
Attenuation constant
Natural (angular) frequency
Damped (angular) frequency

Steady-state solution

$$
\theta_{t}(t)=|A| e^{-a t} \cos \left(\omega_{1} t+\phi\right) \quad \rightarrow \quad \omega_{1}=\sqrt{\omega_{0}^{2}-a^{2}} \quad \text { Transient solution }
$$

Once this response dies away in time the system response only on the frequency of drive ω

Initially the system responds on the characteristic frequency ω_{1}

So the steady-state solution must have the similar time dependence as the drive

$$
\theta_{s s}(t)=\operatorname{Re}\left(\theta(\omega) e^{i \omega t}\right) \Longrightarrow I \ddot{\theta}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\theta}=\tau_{m}=\boldsymbol{K} \lambda \theta_{0} \cos (\omega t)
$$

Substituting $\theta_{s s}(t)$ in equation of motion we will find the equations for $\theta(\omega)$

$$
\theta(\omega)=\frac{\lambda \omega_{0}^{2} \theta_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} a^{2}}} e^{-i \beta(\omega)} \quad \text { and } \quad \beta(\omega)=\tan ^{-1}\left(\frac{2 \omega a}{\omega_{0}^{2}-\omega^{2}}\right)
$$

Steady-state solution. Summary.

$$
\begin{array}{r}
I \ddot{\theta}+K \theta+R \dot{\theta}=\tau_{m}=K \lambda \theta_{0} \cos (\omega t) \\
\text { (2) steady solution }
\end{array}
$$

$$
\begin{array}{ll}
\theta_{s}(t)=B(\omega) \cos (\omega t-\beta(\omega)) & \text { Steady state solution } \\
B(\omega)=\frac{\lambda \theta_{o} \omega_{o}^{2}}{\sqrt{\left(\omega_{o}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} & \text { Amplitude function } \\
\tan \beta(\omega)=\frac{\omega \gamma}{\omega_{o}^{2}-\omega^{2}} & \text { Phase function } \\
\gamma=\frac{R}{I}=2 \frac{R}{2 I}=2 a & \text { Damping constant }
\end{array}
$$

General solution

time domain form for steady-state solution will be

General solution for equation of motion consist of the sum of sum of two components:

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)
$$

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

Coefficients A and ϕ could be determined from initial conditions

Resonance. Experiment. Amplitude

Fitting function:

$$
\begin{gathered}
\theta(f)=\frac{A \bullet f_{0}^{2}}{\sqrt{\left(f_{0}^{2}-f^{2}\right)^{2}+\gamma^{2} f^{2}}} \\
\omega=2 \pi f ; \gamma=2 \mathrm{a}
\end{gathered}
$$

To create a new fitting function go "Tools" \rightarrow "Fitting Function Builder" or press F8

Resonance. Experiment. Phase

Scanning the driving frequency we can measure the amplitude of the pendulum oscillating and the phase shift

Both parameters Amplitude and phase can be defined by DAQ program or using Origin

Resonance. Amplitude of the Angular Displacement.

Amplitude

$$
\left|\theta_{s s}(t)\right|=\frac{\lambda \omega_{0}^{2} \theta_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} a^{2}}}
$$

At resonance $\omega=\omega_{0}$

$$
\left|\theta_{s s}(t)\right|=\frac{\lambda \omega_{0} \theta_{0}}{2 a}=\lambda \theta_{0} \bullet Q
$$

Combination of high initial amplitude θ_{0}, and high quality Q or low damping factor \mathbf{a} could be result of the destruction of the mechanical system

Resonance. Experiment. Taking data.

For correct representation of the resonance curve take care about choosing of the step size in frequency.

Quality factor and log decrement

There are two parameters used to measure the rate at which the oscillations of a system are damped out. One parameter is the logarithmic decrement δ, and the other is the quality factor, Q.
δ, is defined by $\quad \delta=\ln \left(\frac{\theta\left(t_{\max }\right)}{\theta\left(t_{\max }+T_{1}\right)}\right)=\ln \left(\frac{e^{-a t_{\max }}}{e^{-a\left(t_{\max }+T_{1}\right)}}\right)=a T_{1}$.

$$
\begin{aligned}
& \delta=\ln \left(\frac{8.49}{7.35}\right) \approx 0.144 \\
& Q=2 \pi \frac{\text { total stored energy }}{\text { decrease in energy per period }} . \\
& Q=\frac{\omega_{1}}{R / I}=\frac{\omega_{1}}{2 a}=\frac{\pi}{a} \frac{\omega_{1}}{2 \pi}=\frac{\pi}{a} \frac{1}{T_{1}}=\frac{\pi}{\delta} \\
& Q \sim 21.8
\end{aligned}
$$

Quality factor and log decrement

It can be shown that \mathbf{Q} can be calculated as $\omega_{1} / \Delta \omega$ or $f_{1} / \Delta f . \Delta \omega$ is bandwidth of the resonance curve on the half power level or $\frac{\theta_{\text {max }}}{\sqrt{2}}$ for amplitude graph

Here Q~7.9

Beats. Theory.

Consider sum of two harmonic signals of frequencies ω_{1} and ω_{2}
$\mathbf{y}_{1}=A \sin \left(\omega_{1} \mathbf{t}+\varphi_{1}\right) ; \mathbf{y}_{2}=\boldsymbol{B} \sin \left(\omega_{2} \mathbf{t}+\varphi_{2}\right)$
In case $A=B y=y_{1}+y_{2}=2 A \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t+\beta_{1}\right) \cos \left(\frac{\omega_{1}-\omega_{2}}{2} \boldsymbol{t}+\boldsymbol{\beta}_{2}\right)$;
$\beta_{1}=\frac{\varphi_{1}+\varphi_{2}}{2} ; \beta_{2}=\frac{\varphi_{1}-\varphi_{2}}{2}$
If $\omega_{1} \approx \omega_{2} \approx \frac{\omega_{1}+\omega_{2}}{2}=\omega \quad$ and $\quad \frac{\omega_{1}-\omega_{2}}{2}=\Omega$
$\mathrm{y}=2 \boldsymbol{A} \cos \left(\Omega t+\beta_{2}\right) \sin \left(\omega t+\beta_{1}\right)$

Beats. Theory.

More general case $\mathbf{A} \neq \mathrm{B} \omega_{1}$ and ω_{2}

$$
y_{1}=A \sin \left(\omega_{1} t\right) ; y_{2}=B \sin \left(\left(\omega_{1}+\alpha\right) t\right)
$$

$$
y=y_{1}+y_{2}=C \sin ((\omega+\beta) t) \quad \text { where } C=\sqrt{A^{2}+B^{2}+2 A B \cos (a t)}
$$

$$
\beta=\tan ^{-1}\left(\frac{B \sin (\alpha t)}{A+B \cos (\alpha t)}\right)+\left\{\begin{array}{l}
0 \text { if } A+B \cos (\alpha t) \geq 0 \\
\pi \text { if } A+B \cos (\alpha t)<0
\end{array}\right.
$$

Beats. Experiment

Time domain trace

Beating spectrum

Use Origin to analyze the frequency spectrum!

Beats. Experiment.

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

Beats dying in time. How fast - it depends on damping. When you will work on resonance data - wait until you will see the steady state oscillations.

Beats. Experiment.

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

$\theta_{t}(t) \rightarrow 0 \quad$ This can be seen well from "envelope" plot

Origin 8.6: Analysis \rightarrow Signal Processing \rightarrow Envelope

Beats. Experiment. Fitting.

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))+C
$$

First let we apply FFT to find ω_{1} and ω

Result: $\omega_{1}=3.1402 \mathrm{rad}^{-1}$ and $\omega=2.8298 \mathrm{rad}^{-1}$

Beats. Experiment. Fitting.

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-\frac{t}{t_{0}}} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))+C
$$

8 fitting parameters

From fitting

A	0.65012
\mathbf{t}_{0}	199.64912
ω_{1}	3.13666
ϕ	0.33135
B	-0.74076
ω	2.82464
β	-0.87829
C	-0.11176

Result from FFT: $\omega_{1}=3.1402 \mathrm{rad}^{-1}$ and $\omega=2.8298 \mathrm{rad}^{-1}$

Beats. Experiment. Fitting. Residuals.

Compare with original pendulum spectrum

Possible origin of "extra" peaks:
(i) Nonlinear behavior of pendulum
(ii) Not a single frequency driving force provided by motor (iii) Not ideal fitting function

Beats. Experiment.

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

$$
\theta_{t}(t) \rightarrow 0
$$

We also can analyze the decrease of the amplitude of the ω_{1} component by analyzing the spectrum as a function of time

Last 55 sec

Origin 9.0: Analysis \rightarrow Signal Processing \rightarrow FFT

Beats. RLC Experiment.

Beats. RLC Experiment.

Envelope

Beats. Experiment. More complicated case.

In the case of driving frequency $f_{d}=f_{1} / \mathbf{N}$ where \mathbf{N} is integer we can observe more complicated motion of the pendulum

Beats. Experiment. More complicated case.

In the case of driving frequency $f_{d}=f_{1} / \mathbf{N}$ where \mathbf{N} is integer we can observe more complicated motion of the pendulum

Beats. Experiment. Driving spectrum.

Detailed analyzes* shows that even if $\emptyset=\emptyset_{0} \sin (\omega t)$ the driving torque contains several harmonics of ω
*P. Debevec (UIUC, Department of Physics)

